Market Clearing Problem
This problem is defined at period $t$ and scenario $\omega$.
Sets
Lists new sets, not present in the centralized operation subproblems.
- $K(i, n)$: Set of segment offers at node $n$ for the asset owner $i$.
- $K^M(i)$: Set of bid profiles for the asset owner $i$.
- $\mathcal{K}_m(i)$: Complementary grouping $m$ for the asset owner $i$.
- $J^{VR}$: Set of virtual reservoirs.
- $J^H_VR$: Set of hydro units associated with some virtual reservoir.
- $J^H_{VR}(r)$: Set of hydro units associated with virtual reservoir $r$.
- $I^{VR}(r)$: Set of asset owners associated with virtual reservoir $r$.
- $K^{VR}(r, i)$: Set of segment offers at virtual reservoir $r$ for the asset owner $i$.
- $P^{WG}(r)$: Set of waveguide points for virtual reservoir $r$.
Parameters
We add the following parameters to the list of parameters of the strategic subproblem:
Flexible Bids
- $P_{i, n, \tau, k}(\omega)$: Price offer of asset owner $i$ on network node $n$ during subperiod $\tau$, segment $k$ and scenario $\omega$.
- $Q_{i, n, \tau, k}(\omega)$: Quantity offer of asset owner $i$ on network node $n$ during subperiod $\tau$, segment $k$ and scenario $\omega$.
Profile Bids
- $P^M_{i, n, k}(\omega)$: Price offer of asset owner $i$ on network node $n$, profile $k$ and scenario $\omega$.
- $Q^M_{i, n, \tau, k}(\omega)$: Quantity offer of asset owner $i$ on network node $n$ during subperiod $\tau$, profile $k$ and scenario $\omega$.
- $\mathcal{p}(k)$: Parent profile of profile $k$.
- $X_{i, k}(\omega)$: Minimum activation level of profile $k$ of asset owner $i$ on network node $n$ and scenario $\omega$.
Virtual Reservoirs
- $P^{VR}_{r, i, k}(\omega)$: Price offer of asset owner $i$ on virtual reservoir $r$ for segment $k$ at scenario $\omega$.
- $Q^{VR}_{r, i, k}(\omega)$: Quantity offer of asset owner $i$ on virtual reservoir $r$ for segment $k$ at scenario $\omega$.
- $v^{WG}_{r, h, p}$: Hydro $h$ volume at waveguide point $p$ of virtual reservoir $r$.
- $E^{in}_{r,i}$: Energy account of asset owner $i$ on virtual reservoir $r$ at beginning of period.
- $\zeta_{r,h}$: Factor that converts the water volume at hydro unit $h$, where $h \in J^H_{VR}(r)$, into energy.
- $e^{inflow}_r$: Additional energy from inflow water, at virtual reservoir $r$.
- $\gamma^{VR}_{r,i}$: Inflow shares of asset owner $i$ at virtual reservoir $r$. $\sum_{i \in I^{VR}(r)} \gamma^{VR}_{r,i} = 1 \; \forall r \in J^{VR}$.
Variables
Lists new variables, not present in the centralized operation subproblems.
Flexible Bids
- $\lambda_{i, n, \tau, k}$: Linear combination coefficients for segment offer $k$ of asset owner $i$ on network node $n$ during subperiod $\tau$.
- $q_{i, n, \tau, k}$: Total energy generated by asset owner $i$ on network node $n$ during subperiod $\tau$ related to the segment offer $k$.
Multi-hour Bids
- $\lambda^M_{i, k}$: Convex combination coefficients for profile $k$ of asset owner $i$.
- $\lambda^X_{i, k}$: Activation of profile $k$ of asset owner $i$.
- $q^M_{i, n, \tau, k}$: Total energy generated by asset owner $i$ on network node $n$ during subperiod $\tau$ related to the profile $k$.
Virtual Reservoirs
- $q^{VR}_{r, i, k}$: Total energy generated by asset owner $i$ on virtual reservoir $r$ related to segment offer $k$.
- $\lambda^{WG}_{r, p}$: Convex combination coefficients for the waveguide point $p$ of virtual reservoir $r$.
- $\delta^{WG}_{r, h}$: Hydro $h$ volume distance to waveguide points of virtual reservoir $r$.
- $E^{out}_{r,i}$: Energy account of asset owner $i$ at virtual reservoir $r$ at the end of the period.
Subproblem Constraints
Offer bounds
Flexible Bids
\[ 0 \leq \lambda_{i, n , \tau, k} \leq 1 \quad \forall i \in I, n \in N, \tau \in B(t), k \in K(i, n) \\\]
Profile Bids
\[ 0 \leq \lambda^M_{i, k} \leq 1 \quad \forall i \in I, k \in K^M(i) \\\]
\[ \lambda^X_{i, k} \in \{0, 1\} \quad \forall i \in I, k \in K^M(i) \\\]
Virtual Reservoirs
\[ 0 \leq q^{VR}_{r, i, k} \leq Q^{VR}_{r, i, k}(\omega) \quad \forall r \in J^{VR}, i \in I^{VR}(r), k \in K^{VR}(r, i) \\\]
Bids Segment Curve
Flexible Bids
\[ q_{i, n, \tau, k} = \lambda_{i, n , \tau, k} Q_{i, n, \tau, k}(\omega) \quad \forall i \in I, n \in N, \tau \in B(t), k \in K(i, n) \\\]
Profile Bids
\[ q^M_{i, n, \tau, k} = \lambda^M_{i, k} Q^M_{i, n, \tau, k}(\omega) \quad \forall i \in I, n \in N, \tau \in B(t), k \in K^M(i) \\\]
Complementarity Constraints
\[ \sum_{k \in K}{\lambda^M_{i, k}} \leq 1 \quad \forall K \in \mathcal{K}_m(i), i \in I, m \in M \\\]
Precedence Relationship
\[ \lambda^M_{i, k} \leq \lambda^M_{i, \mathcal{p}(k)} \quad \forall i \in I, k \in K^M(i) \\\]
Minimum Acceptance
\[ \lambda^X_{i, k} X_{i, k}(\omega) \leq \lambda^M_{i, k} \leq \lambda^X_{i, k} \quad \forall i \in I, k \in K^M(i) \\\]
Positive Final Account
\[E^{out}_{r,i} = E^{in}_{r,i} + e^{inflow}_r \cdot \gamma^{VR}_{r,i} - \sum_{k \in K^{VR}(r, i)}{q^{VR}_{r, i, k}} \quad \forall i \in I^{VR}(r), \forall r \in J^{VR} \\ E^{out}_{r,i} \ge 0 \quad \forall i \in I^{VR}(r), \forall r \in J^{VR}\]
Physical-Virtual Coupling
The physical-virtual coupling can be done by generation:
\[ \sum_{\tau \in B(t)}{\sum_{h \in J^H_{VR}(r)}{(u_{h, \tau} + s_{h, \tau}) \cdot \rho_h \cdot C_{hm^3/h \rightarrow m^3/s}}} = \sum_{i \in I^{VR}(r)}{\sum_{k \in K^{VR}(r, i)}{q^{VR}_{r, i, k}}} \quad \forall r \in J^{VR}\]
or by volume:
\[ \sum_{h \in J^H_{VR}(r)} v_{h, \tau^{end}} \cdot \zeta_{r,h} = \sum_{i \in I^{VR}(r)} \left(E^{out}_{r,i} - \sum_{k \in K^{VR}(r,i)} q^{VR}_{r,i,k}\right) \quad \forall r \in J^{VR} \]
Waveguide Convex Combination
\[ \sum_{p \in P^{WG}(r)}{\lambda^{WG}_{r, p}} = 1 \quad \forall r \in J^{VR}\]
Waveguide Volume Distance
\[ \delta^{WG}_{r, h} \geq v_{h, \tau^{end}} - \sum_{p \in P^{WG}(r)}{\lambda^{WG}_{r, p} v^{WG}_{r, h, p}} \quad \forall r \in J^{VR}, h \in J^H_{VR}(r) \\ \delta^{WG}_{r, h} \geq \sum_{p \in P^{WG}(r)}{\lambda^{WG}_{r, p} v^{WG}_{r, h, p}} - v_{h, \tau^{end}} \quad \forall r \in J^{VR}, h \in J^H_{VR}(r) \]
Demand Balance
\[ \sum_{i \in I} \sum_{k \in K(i, n)}{q_{i, n, \tau, k}} + \sum_{i \in I} \sum_{k \in K^M(i, n)}{q^M_{i, n, \tau, k}} + \sum_{h \in J^H_{VR}}{g^H_{h, \tau}} + \sum_{l \in L^{in}(n)}{f_{l, \tau}} - \sum_{l \in L^{out}(n)}{f_{l, \tau}} + \sum_{j \in J^D(n)}{\delta_{j, \tau}} \\ = \sum_{j \in J^D(n)}{D_{j, \tau, \omega}} \quad \forall n \in N, \tau \in B(t)\]
Transmission Bounds
\[ -F_{j, \tau} \leq f_{j, \tau} \leq F_{j, \tau}, \quad \forall j \in L, \tau \in B(t)\]
Demand Deficit Bounds
\[ 0 \leq \delta_{j, \tau}, \quad \forall j \in J^D, \tau \in B(t)\]
Convex combination bounds
\[ 0 \leq \lambda^{WG}_{r, p} \leq 1 \quad \forall r \in J^{VR}, p \in P^{WG}(r)\]
Objective Function
Flexible Bids
\[ min{ \sum_{\tau \in B(t)}{ \sum_{n \in N}{ \sum_{i \in I} \sum_{k \in K(i, n)}{P_{i, n, \tau, k}(\omega) q_{i, n, \tau, k}} } } }\]
Multi-hour Bids
\[ min{ \sum_{\tau \in B(t)}{ \sum_{n \in N}{ \sum_{i \in I} \sum_{k \in K^M(i)}{P^M_{i, k}(\omega) q^M_{i, n, \tau, k}} } } }\]
Virtual Reservoirs
\[ min{ \sum_{r \in J^{VR}}{ \sum_{i \in I_{VR}(r)}{ \sum_{k \in K^{VR}(r, i)}{P^{VR}_{r, i, k}(\omega) q^{VR}_{r, i, k}} } } }\]
Hydro Units related to Virtual Reservoirs
\[ min{ \sum_{\tau \in B(t)} \sum_{h \in J^{H}_{VR}}{ C^H g^H_{h, \tau} } }\]
Waveguide distance penalty
\[ min{ \quad \varepsilon \cdot \sum_{r \in J^{VR}}{ \sum_{h \in J^H_{VR}(r)} \delta^{WG}_{r, h} } }\]
Hydro constraints penalty
\[ min{ \sum_{\tau \in B(t)}{ \sum_{j \in J^H} C^\eta \eta_{j, \tau} } }\]